FUSION AND ORGANIC ACTIVITY OF SELECTED NOVEL STILBENES ANALOGUES AS ANTIPROLIFERATIVE CAUSES

Dinesh Bansilal Deore,
Research Scholar, School of Science, Glocal University Saharanpur (U.P) Glocal University Saharanpur (U.P)
Dr. Satyabir Singh,
Research Supervisor, School of Pharmacy, Glocal University Saharanpur (U.P) Glocal University Saharanpur (U.P)

Abstract

: Malignant tumours are one of the world's most serious hazards to human health, and the clinical prognosis is still insufficient. As a result, it is necessary to develop new therapeutic strategies for the improvement of presently available medications.There has been a lot of interest in using natural products or their derivatives to produce more effective chemotherapeutic drugs in recent decades. Natural chemicals having a stilbene backbone have shown to have promise anticancer activity in recent years, targeting a wide range of intracellular pathways. In view of that some new stilbene analogues were synthesized and screened them for antiangiogenic activity. Majority of the synthesised compounds exhibited considerable antiangiogenic activity. Antiangiogenic action was discovered to be affected by the size of the bridge substituent (on the Ethylene Bridge). Most active compounds of the antiangiogenic screening were further subjected for anticancer activity.Compound 5a showed maximum anticancer activity with \% growth inhibition of 63.43 and 56.24 against HCT-116 and MCF-7 cell lines respectively.Further derivatization of these molecules will be helpful in the hopes of obtaining more selective and potent anticancer medicines.

Keywords: Stilbenes, Combretastatins, Antiangiogenic, Anticancer.

Introduction

One of the most widely explored topics today is cancer prevention. Different techniques are required since the pathophysiology of cancer is complicated in so many ways. Although significant improvements in cellular and molecular biology have improved cancer chemotherapeutic therapy, more research into new anticancer drugs is
still needed to overcome resistance and toxicity problems. Because natural products are a substantial source of lead compounds with varied mechanisms of cytostatic action [1], there has been a lot of interest in using natural products or their derivatives to produce more effective chemotherapeutic drugs in recent decades [2]. Natural chemicals having a stilbene backbone have shown to have promise anticancer activity in recent years, targeting a wide range of intracellular pathways [3a-b].Stilbene is a flexible scaffold with two aromatic rings connected by an ethylene bridge. Some plants create stilbenes as a defence mechanism in reply to pathogen spell and other stresses. Stilbenes are prevalent in natural stuffs [4] and have aextensivearray of biological roles [5]. They are classified as Z-type or E-type depending on the arrangement of their middle double bond, which can endure Z/E isomerization, resulting in a change in overall structure and a reduction in biological activity. In reality, photoisomerization is a typical obstacle in optimization research, and much quantum chemistry calculation research has concentrated on the mechanisms behind it [6], rather than optimising these molecules to increase their stability and retain their biological action [7-9]. Stilbene-containing analogues have long piqued the interest of chemists and pharmacologists due to their key biological effects, which include antioxidant, hypolipidemic, anticancer, anti-inflammatory, and antiviral capabilities [14-18]. Among these, resveratrol is one of the most investigated, with anti-proliferative, antioxidant [10a-c], anti-inflammatory, and anticancer properties[11-13] widely described. New stilbene derivatives are created, manufactured, and evaluated on different cellular targets in order to increase cancer chemopreventive and/or therapeutic activity, as well as bioavailability in comparison to the parent medication. The medicinal chemistry community has paid close attention to these potentially novel c hemotherapeutic drugs. Many analogues of resveratrol have one or both aromatic rings that have been replaced differently. There are medications in clinical use that have a stilbenecenter, and numerous cross derivatives have been explored on various biological targets [18a-b]. Combretastatin A-4, a stilbene derivative, has emerged as a promising candidate for powerful in vitro and in vivo anticancer bioactivities throughout the process of discovering chemicals active in the prevention and treatment of cancer [19].

CA-4 and other combretastatins have significant anticancer/antivascular activity, which prompted us to manufacture several novel CA-4 analogues and test them for antiangiogenic and anticancer activity in order to uncover new anticancer drugs with potent activity. The ethylene bridge of CA-4 is substituted with various groups in some of the produced analogues to test the influence of such change on activity. Apart from the 3,4,5trimethoxy group, additional groups such as 3,5-dimethoxy, 3,5-dinitro, 3-dimethylamino, and 2,3-dichloro are also tried as substituents on CA-4's rings A and B.

Materials and Method

Chemistry

In the presence of triethylamine, carboxylic acids (3a-d) were produced by base catalysed condensation of onitrophenyl acetic acid (2) with corresponding aryl Aldehydes (1a-d). Carboxylic acids (3a-d) were esterified with methanol using a catalytic quantity of $\mathrm{H}_{2} \mathrm{SO}_{4}$ to produce matching ester derivatives (4a-d). In refluxing benzene, thionyl chloride was reacted with carboxylic acids (3a-d and 8) to provide the corresponding acid chlorides (5ad), which were then reacted with suitable amine to give the amide derivatives (6a-n).

Recrystallization/column chromatography was used to purify all of the chemicals. TLC was used to assess the purity of the compounds. Infrared, 1H NMR, and mass spectroscopy were used to confirm the structure of the produced compounds. (Table 1 lists the physical characteristics of the produced compounds, whereas figure 1 shows the synthesis procedure).

Silica gel was used for column chromatography (Qualigens, particle size $60-120 \mathrm{~mm}$). All melting points were calculated using a DECIBEL digital melting point instrument and are displayed as-is. To validate the quality of commercial reagents utilised, compounds generated, and to observe the reactions, silica gel G'sthin layer chromatography (TLC) plates were employed. Table 1 lists the solvent systems used to perform the TLC to check the purity of the compounds produced. Iodine vapours and UV light were used to find the spots. FT-IR spectrophotometers 8400S (SHIMADZU) and SPECTRUM RX1 (PERKIN ELMER) were used to collect IR spectra (KBr Pellets). ${ }^{1} \mathrm{H}$ NMR spectras were recorded on 300 MHz dpx300 and av300 spectrometers using TMS as internal standard in DMSO. Mass spectras were recorded on an API 3000 LC/MS/MS Q3 (SHIMADZU) spectrometer.

General procedure of preparation of compounds

Procedure of preparation of compounds 3a-d

A combination of benzaldehyde ($1 \mathrm{a} / 1 \mathrm{~b} / 1 \mathrm{c} / 1 \mathrm{~d}$), p-nitrophenyl acetic acid (2 mmol), and triethylamine $(0.5 \mathrm{ml})$ in acetic anhydride (5 ml) was heated at reflux for 12 hours, then transferred into a warm saturated sodium carbonate mixture (50 ml) and left for 12 hours. The ether extracts ($2 \times 50 \mathrm{ml}$) were used to extract the combination, and the ether extracts were cast-off. The acidified aqueous solution was filtered and dried, and the precipitated product was acidified with dilute HCl . Column chromatography was used to purify the product.

Procedure of preparation of compounds 4a-d

A 0.5 molstirred solution of carboxylic acid $3 \mathrm{a} / 3 \mathrm{~b} / 3 \mathrm{c} / 3 \mathrm{~d}$ in absolute methanol (20 ml) was added to the combination, which was then heated in reflux for 6 hours. Evaporation removed around 90% of the surplus methanol, and the rest was placed into freezed water $(300 \mathrm{ml})$. The product was excavated using ether $(2 \times 40 \mathrm{ml})$, and the collective extracts were washed with a 2 percent aqueous NaOH solution ($2 \times 50 \mathrm{ml}$) before being rinsed with water $(200 \mathrm{ml})$. The required product was obtained by evaporating ether.

Procedure of preparation of compounds 5a-d

Refluxed for 6 hours was a combination of carboxylic acids $3 \mathrm{a}, 3 \mathrm{~b}, 3 \mathrm{c}, 3 \mathrm{~d}(0.5 \mathrm{mmol})$ and thionyl chloride (1 ml) in benzene (10 ml). Additionalbenzeneand thionyl chloride were separated at decreased pressure, and the remainder was vaccum dried for 30 minutes to get the required product. Recrystallization of EtOAchexane purified the product.

Procedure of preparation of compounds 6a-n

A solution of acid chlorides (prepared from $3 \mathrm{a} / 3 \mathrm{~b} / 3 \mathrm{c} / 3 \mathrm{~d}$ in 0.5 mmol scale, as stated above) in THF (5 $\mathrm{ml})$ was poured to a solution of suitable amine $(0.5 \mathrm{mmol})$ in THF $(5 \mathrm{ml})(10 \mathrm{ml})$. For 3 hours, the mixture was mixed. The residue was put onto ice after the solvents were removed at decreased pressure (200 g). The ether $(2 \times 20 \mathrm{ml})$ was used to extract the product, which was then washed and dried. The unfinished product was obtained by evaporating ether. Recrystallization of EtOAc-hexane purified the product.

Table 1 Physical parameters of synthesized compounds

Compound No.	\mathbf{R}_{1} and \mathbf{R}_{2}	M.P. ${ }^{\circ} \mathrm{C}$	$\mathbf{R}_{\text {fvalue }}{ }^{\mathbf{a}}$	Recrystalliz ation solvent	Molecular Formula

Volume-9, Issue-5 Sep - Oct - 2022
www.ijesrr.org

E-ISSN 2348-6457 P-ISSN 2349-1817
Email- editor@ijesrr.org

3a	$\begin{aligned} & \mathrm{R}_{1}=3,5 \text {-dimethoxy } \\ & \mathrm{R}_{2}=\text { carboxyl } \end{aligned}$	100-102	0.812	EtOAc- Hexane (1:1)	$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{6}$
4a	$\begin{aligned} & \mathrm{R}_{1}=3,5 \text {-dimethoxy } \\ & \mathrm{R}_{2}=\text { methoxycarbonyl } \end{aligned}$	129-131	0.736	EtOAc- Hexane (1:1)	$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{6}$
5a	$\begin{aligned} & \mathrm{R}_{1}=3,5 \text {-dimethoxy } \\ & \mathrm{R}_{2}=\text { chlorocarbonyl } \end{aligned}$	117-120	0.803	EtOAc- Hexane (1:1)	$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{ClNO}_{5}$
6a	$\begin{aligned} & \mathrm{R}_{1}=3,5 \text {-dimethoxy } \\ & \mathrm{R}_{2}= \\ & \text { carbamothioylcarbamoy } \\ & 1 \end{aligned}$	126-130	0.734	EtOAc- Hexane (1:1)	$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}$
6b	$\mathrm{R}_{1}=3$,5-dimethoxy $\mathrm{R}_{2}=4-$ fluorophenylcarbamoyl	109-112	0.676	EtOAc- Hexane (1:1)	$\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{FN}_{2} \mathrm{O}_{5}$
6c	$\begin{aligned} & \mathrm{R}_{1}=3,5 \text {-dimethoxy } \\ & \mathrm{R}_{2}=\text { ethylcarbamoyl } \end{aligned}$	119-122	0.609	EtOAc- Hexane (1:1)	$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5}$
6d	$\mathrm{R}_{1}=3$,5-dimethoxy $\mathrm{R}_{2}=2-$ methylphenylcarbamoyl	104-106	0.718	EtOAc- Hexane (1:1)	$\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5}$
6 e	$\begin{aligned} & \mathrm{R}_{1}=3,5 \text {-dimethoxy } \\ & \mathrm{R}_{2}=2 \text { - } \\ & \text { chlorophenylcarbamoyl } \end{aligned}$	81-83	0.689	EtOAc- Hexane (1:1)	$\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}_{5}$

Volume-9, Issue-5 Sep - Oct - 2022
www.ijesrr.org

E-ISSN 2348-6457 P-ISSN 2349-1817
Email- editor@ijesrr.org

3 b	$\mathrm{R}_{1}=$ 3-dimethylamino $\mathrm{R}_{2}=\text { carboxyl }$	217-219	0.812	EtOAc- Hexane (1:1)	$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$
4b	$\begin{aligned} & \mathrm{R}_{1}=3 \text {-dimethylamino } \\ & \mathrm{R}_{2}=\text { methoxycarbonyl } \end{aligned}$	212-214	0.891	EtOAc- Hexane (1:1)	$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$
5b	$\begin{aligned} & \mathrm{R}_{1}=3 \text {-dimethylamino } \\ & \mathrm{R}_{2}=\text { chlorocarbonyl } \end{aligned}$	161-164	0.834	EtOAc- Hexane (1:1)	$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}_{3}$
6 f	$\mathrm{R}_{1}=3 \text {-dimethylamino }$ $\mathrm{R}_{2}=$ ethylcarbamoyl	169-171	0.634	EtOAc- Hexane (1:1)	$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$
3 c	$\begin{aligned} & \mathrm{R}_{1}=3,5 \text {-dinitro } \\ & \mathrm{R}_{2}=\text { carboxyl } \end{aligned}$	87-89	0.311	EtOAc- Hexane (1:1)	$\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{8}$
4 c	$\begin{aligned} & \mathrm{R}_{1}=3,5 \text {-dinitro } \\ & \mathrm{R}_{2}=\text { methoxycarbonyl } \end{aligned}$	>250	0.782	EtOAc- Hexane (1:1)	$\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{8}$
5c	$\begin{aligned} & \mathrm{R}_{1}=3,5 \text {-dinitro } \\ & \mathrm{R}_{2}=\text { chlorocarbonyl } \end{aligned}$	95-97	0.822	EtOAc- Hexane (1:1)	$\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{ClN}_{3} \mathrm{O}_{7}$
6 g	$\begin{aligned} & \mathrm{R}_{1}=3,5 \text {-dinitro } \\ & \mathrm{R}_{2}=\text { ethylcarbamoyl } \end{aligned}$	65-67	0.798		$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{7}$

				EtOAc- Hexane (1:1)	
3d	$\begin{aligned} & \mathrm{R}_{1}=2,3 \text {-dichloro } \\ & \mathrm{R}_{2}=\text { carboxyl } \end{aligned}$	139-141	0.570	EtOAc- Hexane (1:1)	$\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{NO}_{4}$
4d	$\begin{aligned} & \mathrm{R}_{1}=2,3 \text {-dichloro } \\ & \mathrm{R}_{2}=\text { methoxycarbonyl } \end{aligned}$	>250	0.911	EtOAc- Hexane (1:1)	$\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{NO}_{4}$
5d	$\begin{aligned} & \mathrm{R}_{1}=2,3 \text {-dichloro } \\ & \mathrm{R}_{2}=\text { chlorocarbonyl } \end{aligned}$	165-168	0.767	EtOAc- Hexane (1:1)	$\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{Cl}_{3} \mathrm{NO}_{3}$
6h	$\begin{aligned} & \mathrm{R}_{1}=2,3 \text {-dichloro } \\ & \mathrm{R}_{2}= \\ & \text { carbamothioylcarbamoy } \\ & 1 \end{aligned}$	128-130	0.702	EtOAc- Hexane (1:1)	$\begin{aligned} & \mathrm{C}_{16} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O} \\ & { }_{3} \mathrm{~S} \end{aligned}$
6 i	$\begin{aligned} & \mathrm{R}_{1}=2,3 \text {-dichloro } \\ & \mathrm{R}_{2}=\text { pyridine-4- } \\ & \text { ylcarbamoyl } \end{aligned}$	161-163	0.558	EtOAc- Hexane (1:1)	$\begin{aligned} & \mathrm{C}_{20} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O} \\ & 3 \end{aligned}$
6j	$\mathrm{R}_{1}=2$,3-dichloro $\mathrm{R}_{2}=$ naphthalene $-1-$ ylcarbamoyl	105-107	0.722	EtOAc- Hexane (1:1)	$\begin{aligned} & \mathrm{C}_{25} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O} \\ & 3 \end{aligned}$
6k	$\mathrm{R}_{1}=2,3$-dichloro	138-140	0.435	EtOAc- Hexane (1:1)	

	$\mathrm{R}_{2}=\text { piperidin-1- }$ ylcarbonyl				$\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}$ 3
61	$\mathrm{R}_{1}=2$,3-dichloro $\mathrm{R}_{2}=\text { piperazin-1- }$ ylcarbony	171-74	0.60	EtOAc- Hexane (1:1)	$\begin{aligned} & \mathrm{C}_{19} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O} \\ & 3 \end{aligned}$
6m	$\begin{aligned} & \mathrm{R}_{1}=2,3 \text {-dichloro } \\ & \mathrm{R}_{2}=2 \text { - } \\ & \text { methoxyphenylcarbamo } \\ & \mathrm{yl} \end{aligned}$	101-103	0.542	EtOAc- Hexane (1:1)	$\begin{aligned} & \mathrm{C}_{22} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O} \\ & 4 \end{aligned}$
6 n	$\begin{aligned} & \mathrm{R}_{1}=2,3 \text {-dichloro } \\ & \mathrm{R}_{2}= \\ & \text { aminoantipyrinylcarbon } \\ & \mathrm{yl} \end{aligned}$	124-126	0.763	EtOAc- Hexane (1:1)	$\begin{aligned} & \mathrm{C}_{26} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O} \\ & 4 \end{aligned}$

Figure 1 Scheme of synthesis of compounds

Antiangiogenesis study by chorioallantoin membrane (CAM) assay

CAM assays are often used as the primary approach to evaluate the effect of antigenic compounds. The basis of this experiment is the formation of a placental membrane, in which at a certain stage of fetal development the formation of new blood vessels in a fertilized egg takes place. The effect of test-impregnated agarose beads on the vascular membrane of open eggs on angiogenesis is evaluated. Fertilized eggs were obtained for testing from Kelchina incubators in Ghaziabad.

Procedure

Twelve eggs were used in each experiment to test one drug at a certain dose. The eggs were fertilised under ideal circumstances of $370^{\circ} \mathrm{C}$ and 80% relative humidity. The shells of eggs were cleaned with $70 \% \mathrm{EtOH}$ to avoid infection. After 72 hours, a syringe was used to retrieve $8-10 \mathrm{ml}$ of albumin from the lower side of the egg, and the hole was bandaged. After the upper half of the shell was removed, the eggs were covered in a plastic sheet and incubated for another 72 hours. When the diameter of the CAM was between 1.8 and 2.6 cm , the pellets containing the test chemicals were placed on it.In a 2.5 percent agarose solution, test compounds were dissolved or suspended. Following gel formation, a micropipette for viscous solutions was used to extract the bulk of agarose gel appropriate to the dosage of the test chemical to be administered to the CAM. As a result, the agarose pellets are not consistent in size. Because the half-cone-shaped agarose pellets sink somewhat into the CAM, they are stuck. The antiangiogenic impact was assessed after 24 hours, either with a stereomicroscope and observation of the avascular zone around the pellet, or with naked eye observation of the avascular zone surrounding the pellet (if clear). Antiangiogenic activity is graded on a scale of 0 to 2 , with 0 indicating no impact, 1 suggesting a moderate effect, and 2 indicating a significant effect (capillary free zone is at least twice as large as the pellet). Membrane irritation and embryotoxicity can also be assessed. B-1, 4-galactan sulphate (LuPS S5), with an average molecular weight of 20000, was used as a positive control, and an agarose pellet was used as a blank [20].

Anticancer activity

Compounds showing potent antiangiogenic activity were further subjected for anticancer activity against HCT116 (colon cancer) and MCF-7 (breast cancer) cell lines by using modified MTT assay method.

Procedure of the in vitro cancer activity

Human tumour cell lines from the cancer screening panel were grown in RPMI-1640 medium with 5\% foetal bovine serum and 2 mM L-glutamine. For a typical screening experiment, cells were injected onto 96 well microtiter plates in 100 L at plating densities ranging from 5,000 to 40,000 cells/well, depending on the doubling period of certain cell lines. Before introducing experimental medications, the microtiter plates were incubated for 24 hours at $37^{\circ} \mathrm{C}, 5 \% \mathrm{CO} 2,95 \%$ air, and 100% relative humidity after cell inoculation. After 24 hours, two plates of each cell line were fixed in situ with trichloroacetic acid (TCA) to represent a measurement of the cell population at the moment of drug delivery (Tz). Experimental medications were solubilized in 400 times the needed final maximum test concentration in dimethyl sulfoxide (DMSO) and kept refrigerated before to use. At the moment of medication administration, an aliquot of frozen concentrate was thawed and diluted to twice the specified final maximum test concentration with complete medium containing $50 \mathrm{~g} / \mathrm{ml}$ gentamicin. Additional four, 10 -fold, or $12-\log$ serial dilutions were made to provide a total of five drug concentrations plus control. By adding aliquots of 1001 of these varied drug dilutions to appropriate microtiter wells already holding 1001 of medium, the required final drug concentrations were attained.

The plates were then incubated for another 48 hours at $37^{\circ} \mathrm{C}, 5 \% \mathrm{CO} 2,95$ percent air, and 100 percent relative humidity after the drug was administered. The test was completed by adding cold TCA to the adhering cells. The cells were fixed in place by gently adding 501 of cold 50% (w/v) TCA (final concentration, 10% TCA) and incubated for 60 minutes at $4^{\circ} \mathrm{C}$. The supernatant was discarded, and the plates were washed five times with tap water and air dried. Sulforhodamine B (SRB) solution (100 l) in 0.4 percent (w/v) acetic acid was added to each well, and plates were incubated for 10 minutes at room temperature. After staining, the plates were washed five times with 1 percent acetic vinegar and air dried to eliminate any unbound colour. After solubilizing the bound dye with 10 mMtrizma base, the absorbance was measured using an automated plate reader at 515 nm . The procedure was the same for suspension cells, with the difference that the test was finished by gently pouring 501 of 80 percent TCA into the wells to settle the cells in the bottom (final concentration, 16 percent TCA).The percentage growth was calculated using the seven absorbance measurements of time zero (Tz), control growth (C), and test growth in the presence of drug at the five concentration levels for each of the drug concentration levels (Ti). The percentage of growth inhibition was calculated using the following formula:
[(Ti-Tz)/(C-Tz)] x 100 for concentrations for which $\mathrm{Ti}>/=\mathrm{Tz}$ [(Ti-Tz)/Tz] x 100 for concentrations for which $\mathrm{Ti}<\mathrm{Tz}$.
For each experimental drug, three dosage response parameters were computed. The drug concentration resulting in a 50% reduction in the net protein increase (as measured by SRB staining) in control cells during the drug incubation was calculated as $(\mathrm{Ti}-\mathrm{Tz}) /(\mathrm{C}-\mathrm{Tz}) \times 100=50$, which is the drug concentration resulting in a 50% reduction in the net protein increase (as measured by SRB staining) in control cells during the drug incubation. $\mathrm{Ti}=\mathrm{Tz}$ was used to calculate the medication concentration that resulted in total growth inhibition (TGI).[(Ti$\mathrm{Tz}) / \mathrm{Tz}$] $100=-50$ was used to compute the drug concentration that resulted in a 50% reduction in measured protein at the conclusion of the drug treatment compared to the beginning (LC50), suggesting a net loss of cells following treatment. If the level of activity was attained, values were computed for each of these three parameters; however, if the effect was not reached or surpassed, the value was stated as higher or less than the maximum or lowest concentration tested [21].

Results and Discussion

In the presence of triethylamine, base catalysed condensation of p-nitrophenyl acetic acid with matching aryl Aldehydes, followed by esterification, or reaction with thionyl chloride followed by reaction with suitable amine yielded Analogues of (Z)-1-phenyl-2-(4-nitrophenyl) ethene.

Infrared, 1 H NMR, and mass spectroscopy were used to confirm the structure of the produced compounds. All of the synthesised compounds' spectral data (1H NMR, IR, and Mass) were found to be in perfect agreement with the hypothesised structures.

Data of spectral studies

3a:(2E)-2-(4-nitrophenyl)-3-(3,5-dimethoxyphenyl)acrylic acid: FTIR (KBr) $\mathrm{cm}^{-1} 3062$ and 857 (C-H), 3028 and $750(\mathrm{Ar}-\mathrm{H}), 2935$ and $1454\left(\mathrm{CH}_{3}\right), 1705(\mathrm{C}=\mathrm{O}), 1660(\mathrm{C}=\mathrm{C}), 1599$ and $1420\left(\mathrm{COO}^{-}\right), 1519$ and $1340(\mathrm{C}-$ NO_{2}), 1239 and $1005(\mathrm{C}-\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR (DMSO) $\delta 9.99(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{~d}, 2 \mathrm{H}), 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~d}, 2 \mathrm{H}), 6.49(\mathrm{~s}, 2 \mathrm{H})$, 3.80 ($\mathrm{s}, 6 \mathrm{H}$); MS (TISI) $329.3\left(\mathrm{M}^{+}\right)$.

4a: Methyl (2E)-2-(4-nitrophenyl)-3-(3,5-dimethoxyphenyl)acrylate: FTIR (KBr) $\mathrm{cm}^{-1} 3070$ and $855(\mathrm{C}-\mathrm{H})$, 3032 and $752(\mathrm{Ar}-\mathrm{H}), 2940$ and $1455\left(\mathrm{CH}_{3}\right), 1730(\mathrm{C}=\mathrm{O}), 1663(\mathrm{C}=\mathrm{C}), 1605(\mathrm{C}=\mathrm{C}$ of Ar$), 1520$ and $1340(\mathrm{C}-$
NO_{2}), 1240, 1130 and $1002(\mathrm{C}-\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR (DMSO) $\delta 8.29(\mathrm{~d}, 2 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~d}, 2 \mathrm{H}), 6.63(\mathrm{~s}, 2 \mathrm{H}), 3.90$ ($\mathrm{s}, 3 \mathrm{H}$), 3.74 ($\mathrm{s}, 6 \mathrm{H}$); MS (TISI) $343.3\left(\mathrm{M}^{+}\right)$.

5a:(2E)-2-(4-nitrophenyl)-3-(3,5-dimethoxyphenyl)acryloyl chloride: FTIR (KBr) $\mathrm{cm}^{-1} 3071$ and 859 (C-H), 3035 and $738(\mathrm{Ar}-\mathrm{H}), 2939$ and $1460\left(\mathrm{CH}_{3}\right), 1756(\mathrm{C}=\mathrm{O}), 1656(\mathrm{C}=\mathrm{C}), 1605(\mathrm{C}=\mathrm{C}$ of Ar$), 1514$ and $1340(\mathrm{C}-$ NO_{2}), 1250 and $1010(\mathrm{C}-\mathrm{O}), 702(\mathrm{C}-\mathrm{Cl}) ;{ }^{1} \mathrm{H}$ NMR (DMSO) $\delta 8.24(\mathrm{~d}, 2 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~d}, 2 \mathrm{H}), 6.53(\mathrm{~s}$, 2H), 3.79 ($\mathrm{s}, 6 \mathrm{H}$); MS (TISI) 347.3 (M^{+}).

6a:(2E)-N-ethyl-2-(4-nitrophenyl)-3-(3,5-dimethoxyphenyl)acrylamide: FTIR (KBr) $\mathrm{cm}^{-1} 3435$ and 1562 (N$\mathrm{H}), 3070$ and $850(\mathrm{C}-\mathrm{H}), 3030$ and $748(\mathrm{Ar}-\mathrm{H}), 2939$ and $1380\left(\mathrm{CH}_{3}\right), 1689(\mathrm{C}=\mathrm{O}), 1651(\mathrm{C}=\mathrm{C}), 1602(\mathrm{C}=\mathrm{C}$ of Ar), 1520 and $1341\left(\mathrm{C}^{2} \mathrm{NO}_{2}\right), 1456\left(\mathrm{CH}_{2}\right), 1253$ and $1001(\mathrm{C}-\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR (DMSO) $\delta 8.99(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{~d}, 2 \mathrm{H})$, $7.78(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~d}, 2 \mathrm{H}), 6.48(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 6 \mathrm{H}), 3.37(\mathrm{q}, 2 \mathrm{H}), 1.12(\mathrm{t}, 3 \mathrm{H}) ; \mathrm{MS}$ (TISI) $356.2\left(\mathrm{M}^{+}\right)$.

6b:(2E)-2-(4-nitrophenyl)-3-(3,5-dimethoxyphenyl)-N-(2-chlorophenyl)acrylamide: FTIR (KBr) $\mathrm{cm}^{-1} 3434$ $(\mathrm{N}-\mathrm{H}), 3078$ and $860(\mathrm{C}-\mathrm{H}), 3031$ and $752(\mathrm{Ar}-\mathrm{H}), 2926\left(\mathrm{CH}_{3}\right), 1681(\mathrm{C}=\mathrm{O}), 1632(\mathrm{C}=\mathrm{C}), 1602(\mathrm{C}=\mathrm{C}$ of Ar$)$, 1520 and $1347\left(\mathrm{C}^{2} \mathrm{NO}_{2}\right), 1240$ and $1009(\mathrm{C}-\mathrm{O}), 709(\mathrm{C}-\mathrm{Cl}) ;{ }^{1} \mathrm{H}$ NMR (DMSO) $\delta 9.63(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{~d}, 2 \mathrm{H}), 8.05$ $(\mathrm{d}, 1 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.34-7.62(\mathrm{~m}, 4 \mathrm{H}), 7.16(\mathrm{t}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 6 \mathrm{H})$; MS (TISI) $438.2\left(\mathrm{M}^{+}\right)$.

6c:(2E)-2-(4-nitrophenyl)-3-(3,5-dimethoxyphenyl)- \boldsymbol{N}-(4-fluorophenyl)acrylamide: FTIR (KBr) cm ${ }^{-1} 3428$ $(\mathrm{N}-\mathrm{H}), 3077$ and $853(\mathrm{C}-\mathrm{H}), 3035$ and $752(\mathrm{Ar}-\mathrm{H}), 2935$ and $1468\left(\mathrm{CH}_{3}\right), 1690(\mathrm{C}=\mathrm{O}), 1658(\mathrm{C}=\mathrm{C}), 1600(\mathrm{C}=\mathrm{C}$ of Ar), 1513 and $1340\left(\mathrm{C}_{-} \mathrm{NO}_{2}\right), 1230$ and $1005(\mathrm{C}-\mathrm{O}), 1122(\mathrm{C}-\mathrm{F}) ;{ }^{1} \mathrm{H}$ NMR (DMSO) $\delta 10.06(\mathrm{~s}, 1 \mathrm{H}), 8.28$ (d, $2 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~d}, 2 \mathrm{H}), 7.61(\mathrm{~d}, 2 \mathrm{H}), 7.97(\mathrm{~d}, 2 \mathrm{H}), 6.48(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H}) ; \mathrm{MS}$ (TISI) $422.2\left(\mathrm{M}^{+}\right)$.

6d:(2E)-2-(4-nitrophenyl)-3-(3,5-dimethoxyphenyl)-N-(2-methylphenyl)acrylamide: FTIR (KBr) $\mathrm{cm}^{-1} 3433$ $(\mathrm{N}-\mathrm{H}), 3066$ and $850(\mathrm{C}-\mathrm{H}), 3038$ and $751(\mathrm{Ar}-\mathrm{H}), 2935$ and $1462\left(\mathrm{CH}_{3}\right), 1684(\mathrm{C}=\mathrm{O}), 1662(\mathrm{C}=\mathrm{C}), 1601(\mathrm{C}=\mathrm{C}$ of Ar), 1520 and $1346\left(\mathrm{C}_{-} \mathrm{NO}_{2}\right), 1243$ and $1005(\mathrm{C}-\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR (DMSO) $\delta 9.49(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~d}, 2 \mathrm{H}), 7.78(\mathrm{~s}$, $1 \mathrm{H}), 7.29-7.59(\mathrm{~m}, 5 \mathrm{H}), 7.17(\mathrm{t}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 6 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$; MS (TISI) $418.2\left(\mathrm{M}^{+}\right)$.

6e:(2E)- N-(aminocarbonothioyl)-2-(4-nitrophenyl)-3-(3,5-dimethoxyphenyl)acrylamide: FTIR (KBr) cm^{-1} 3507, 3377 and $1599\left(\mathrm{NH}_{2}\right), 3425$ and $1553(\mathrm{~N}-\mathrm{H}), 3058$ and $860(\mathrm{C}-\mathrm{H}), 3026$ and $752(\mathrm{Ar}-\mathrm{H}), 2935$ and 1455 $\left(\mathrm{CH}_{3}\right), 1688(\mathrm{C}=\mathrm{O}), 1650(\mathrm{C}=\mathrm{C}), 1520$ and $1340\left(\mathrm{C}-\mathrm{NO}_{2}\right), 1250$ and $1000(\mathrm{C}-\mathrm{O}), 1125(\mathrm{C}=\mathrm{S}) ;{ }^{1} \mathrm{H}$ NMR (DMSO)
$\delta 9.56(\mathrm{~s}, 2 \mathrm{H}), 8.50(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~d}, 2 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~d}, 2 \mathrm{H}), 6.45(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H}) ; \mathrm{MS}$ (TISI) 387.2 $\left(\mathrm{M}^{+}\right)$.

3b:(2E)-3-(3,5-dinitrophenyl)-2-(4-nitrophenyl)acrylic acid: FTIR (KBr) $\mathrm{cm}^{-1} 3100$ and 839 (C-H), 3034 and $744(\mathrm{Ar}-\mathrm{H}), 1722(\mathrm{C}=\mathrm{O}), 1660(\mathrm{C}=\mathrm{C}), 1590\left(\mathrm{COO}^{-}\right), 1520$ and $1340\left(\mathrm{C}^{2} \mathrm{NO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (DMSO) $\delta 10.00(\mathrm{~s}, 1 \mathrm{H})$, $8.41(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~d}, 2 \mathrm{H}), 8.22(\mathrm{~d}, 1 \mathrm{H}), 8.05(\mathrm{~d}, 1 \mathrm{H}), 7.49-7.77(\mathrm{~m}, 4 \mathrm{H})$; MS (TISI) $359.2\left(\mathrm{M}^{+}\right)$.

4b: Methyl (2E)-3-(3,5-dinitrophenyl)-2-(4-nitrophenyl)acrylate: FTIR (KBr) cm ${ }^{-1} 3050$ and 879 (C-H), 3030 and $750(\mathrm{Ar}-\mathrm{H}), 2926$ and $1469\left(\mathrm{CH}_{3}\right), 1715(\mathrm{C}=\mathrm{O}), 1670(\mathrm{C}=\mathrm{C}), 1520$ and $1339\left(\mathrm{C}-\mathrm{NO}_{2}\right), 1248$ and $1110(\mathrm{C}-$ O); ${ }^{1} \mathrm{H}$ NMR (DMSO) $\delta 8.37(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~d}, 2 \mathrm{H}), 8.18(\mathrm{~d}, 1 \mathrm{H}), 8.05(\mathrm{~d}, 1 \mathrm{H}), 7.79(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{~d}, 2 \mathrm{H}), 3.97$ ($\mathrm{s}, 3 \mathrm{H}$); MS (TISI) $373.1\left(\mathrm{M}^{+}\right)$.

5b:(2E)-3-(3,5-dinitrophenyl)-2-(4-nitrophenyl)acryloyl chloride: FTIR (KBr) $\mathrm{cm}^{-1} 3050$ and $857(\mathrm{C}-\mathrm{H})$, 3027 and $749(\mathrm{Ar}-\mathrm{H}), 1759(\mathrm{C}=\mathrm{O}), 1690(\mathrm{C}=\mathrm{C}), 1609(\mathrm{C}=\mathrm{C}$ of Ar$), 1520$ and $1344\left(\mathrm{C}-\mathrm{NO}_{2}\right), 710(\mathrm{C}-\mathrm{Cl}) ;{ }^{1} \mathrm{H}$ NMR (DMSO) $\delta 8.58(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~d}, 2 \mathrm{H}), 8.20(\mathrm{~d}, 1 \mathrm{H}), 8.10(\mathrm{~d}, 1 \mathrm{H}), 7.79(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{~d}, 2 \mathrm{H})$; MS (TISI) $377.1\left(\mathrm{M}^{+}\right)$.

6f:(2E)-N-ethyl-3-(3,5-dinitrophenyl)-2-(4-nitrophenyl)acrylamide: FTIR (KBr) $\mathrm{cm}^{-1} 3430$ and 1566 (N-H), 3048 and $856(\mathrm{C}-\mathrm{H}), 3031$ and $750(\mathrm{Ar}-\mathrm{H}), 2930\left(\mathrm{CH}_{3}\right), 1674(\mathrm{C}=\mathrm{O}), 1521$ and $1340\left(\mathrm{C}-\mathrm{NO}_{2}\right), 1466\left(\mathrm{CH}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (DMSO) $\delta 9.01(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{~d}, 2 \mathrm{H}), 8.24(\mathrm{~d}, 1 \mathrm{H}), 8.13(\mathrm{~d}, 1 \mathrm{H}), 7.77(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{~d}, 2 \mathrm{H})$, $3.34(\mathrm{q}, 2 \mathrm{H}), 1.16(\mathrm{t}, 3 \mathrm{H})$; MS (TISI) $386.2\left(\mathrm{M}^{+}\right)$.

3c:(2E)-3-[3-(dimethylamino)phenyl]-2-(4-nitrophenyl)acrylic acid: FTIR (KBr) $\mathrm{cm}^{-1} 3066$ and 856 (C-H), 3024 and $757(\mathrm{Ar}-\mathrm{H}), 2880$ and $1440\left(\mathrm{CH}_{3}\right), 1716(\mathrm{C}=\mathrm{O}), 1666(\mathrm{C}=\mathrm{C}), 1599$ and $1410\left(\mathrm{COO}^{-}\right), 1519$ and 1350 $\left(\mathrm{C}_{-} \mathrm{NO}_{2}\right), 1196\left(\mathrm{NR}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (DMSO) $\delta 10.00(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~d}, 2 \mathrm{H}), 7.86(\mathrm{~d}, 2 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~d}, 2 \mathrm{H})$, $6.69(\mathrm{~d}, 2 \mathrm{H}), 2.98(\mathrm{~s}, 6 \mathrm{H})$; MS (TISI) $312.2\left(\mathrm{M}^{+}\right)$.

4c: Methyl (2E)-3-[3-(dimethylamino)phenyl]-2-(4-nitrophenyl)acrylate: FTIR (KBr) $\mathrm{cm}^{-1} 3047$ and 855 (CH), 3019 and $750(\mathrm{Ar}-\mathrm{H}), 2879\left(\mathrm{CH}_{3}\right), 1729(\mathrm{C}=\mathrm{O}), 1659(\mathrm{C}=\mathrm{C}), 1599(\mathrm{C}=\mathrm{C}$ of Ar$), 1527$ and $1345\left(\mathrm{C}-\mathrm{NO}_{2}\right)$, 1250 and $1113(\mathrm{C}-\mathrm{O}), 1189\left(\mathrm{NR}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (DMSO) $\delta 8.30(\mathrm{~d}, 2 \mathrm{H}), 7.91(\mathrm{~d}, 2 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~d}, 2 \mathrm{H})$, $6.69(\mathrm{~d}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.09(\mathrm{~s}, 6 \mathrm{H})$; MS (TISI) $326.2\left(\mathrm{M}^{+}\right)$.

5c:(2E)-3-[3-(dimethylamino)phenyl]-2-(4-nitrophenyl)acryloyl chloride: FTIR (KBr) $\mathrm{cm}^{-1} 3048$ and 857 (CH), 3026 and $749(\mathrm{Ar}-\mathrm{H}), 2880\left(\mathrm{CH}_{3}\right), 1788(\mathrm{C}=\mathrm{O}), 1690(\mathrm{C}=\mathrm{C}), 1605(\mathrm{C}=\mathrm{C}$ of Ar$), 1519$ and $1339\left(\mathrm{C}-\mathrm{NO}_{2}\right)$, $1191\left(\mathrm{NR}_{3}\right), 720(\mathrm{C}-\mathrm{Cl}) ;{ }^{1} \mathrm{H}$ NMR (DMSO) $\delta 8.41(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~d}, 2 \mathrm{H}), 7.87(\mathrm{~d}, 2 \mathrm{H}), 7.51(\mathrm{~d}, 2 \mathrm{H}), 6.70(\mathrm{~d}, 2 \mathrm{H})$, 2.92 (s, 6H); MS (TISI) 330.1 (${ }^{+}$).

6g:(2E)-3-[3-(dimethylamino)phenyl]-N-ethyl-2-(4-nitrophenyl)acrylamide: FTIR (KBr) cm ${ }^{-1} 3425$ and $1559(\mathrm{~N}-\mathrm{H}), 3019$ and $857(\mathrm{C}-\mathrm{H}), 2890\left(\mathrm{CH}_{3}\right), 1680(\mathrm{C}=\mathrm{O}), 1599(\mathrm{C}=\mathrm{C}$ of Ar$), 1520$ and $1348\left(\mathrm{C}-\mathrm{NO}_{2}\right), 1468$ $\left(\mathrm{CH}_{2}\right), 1198\left(\mathrm{NR}_{3}\right), 750(\mathrm{Ar}-\mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR (DMSO) $\delta 8.79(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~d}, 2 \mathrm{H}), 7.84(\mathrm{~d}, 2 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.50$ (d, 2H), 6.69 (d, 2H), 3.29 (q, 2H), 3.05 (s, 6H), 1.10 (t, 3H); MS (TISI) $339.0\left(\mathrm{M}^{+}\right)$.

3d:(2E)-3-(2,3-dichlorophenyl)-2-(4-nitrophenyl)acrylic acid: FTIR (KBr) $\mathrm{cm}^{-1} 3026$ and 857 (C-H), 1720 $(\mathrm{C}=\mathrm{O}), 1631(\mathrm{C}=\mathrm{C}), 1600$ and $1410\left(\mathrm{COO}^{-}\right), 1519$ and $1340\left(\mathrm{C}-\mathrm{NO}_{2}\right), 750(\mathrm{Ar}-\mathrm{H}), 690(\mathrm{C}-\mathrm{Cl}) ;{ }^{1} \mathrm{H}$ NMR (DMSO) $\delta 10.01(\mathrm{~s}, 1 \mathrm{H}), 8.27(\mathrm{~d}, 2 \mathrm{H}), 7.90(\mathrm{~d}, 2 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.59(\mathrm{~m}, 4 \mathrm{H})$; MS (TISI) $337.5\left(\mathrm{M}^{+}\right)$.

4d: Methyl (2E)-3-(2,3-dichlorophenyl)-2-(4-nitrophenyl)acrylate: FTIR (KBr) $\mathrm{cm}^{-1} 3038$ and 858 (C-H), 3020 and $749(\mathrm{Ar}-\mathrm{H}), 2920\left(\mathrm{CH}_{3}\right), 1729(\mathrm{C}=\mathrm{O}), 1642(\mathrm{C}=\mathrm{C}), 1605(\mathrm{C}=\mathrm{C}$ of Ar$), 1518$ and $1340\left(\mathrm{C}-\mathrm{NO}_{2}\right), 1248$ and $1101(\mathrm{C}-\mathrm{O}), 680(\mathrm{C}-\mathrm{Cl}) ;{ }^{1} \mathrm{H}$ NMR (DMSO) $\delta 8.27(\mathrm{~d}, 2 \mathrm{H}), 7.77(\mathrm{~d}, 2 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.34-7.59(\mathrm{~m}, 4 \mathrm{H}), 3.70$ ($\mathrm{s}, 3 \mathrm{H}$); MS (TISI) $351.5\left(\mathrm{M}^{+}\right)$.

5d:(2E)-3-(2,3-dichlorophenyl)-2-(4-nitrophenyl)acryloyl chloride: FTIR (KBr) $\mathrm{cm}^{-1} 3050$ and 857 (C-H), 3023 and $749(\mathrm{Ar}-\mathrm{H}), 1786(\mathrm{C}=\mathrm{O}), 1642(\mathrm{C}=\mathrm{C}), 1605(\mathrm{C}=\mathrm{C}$ of Ar$), 1520$ and $1340\left(\mathrm{C}-\mathrm{NO}_{2}\right), 693(\mathrm{C}-\mathrm{Cl}) ;{ }^{1} \mathrm{H}$ NMR (DMSO) $\delta 8.29(\mathrm{~d}, 2 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~d}, 2 \mathrm{H}), 7.27-7.59(\mathrm{~m}, 4 \mathrm{H})$; MS (TISI) $355.6\left(\mathrm{M}^{+}\right)$.

6h:(2E)-N-(aminocarbonothioyl)-3-(2,3-dichlorophenyl)-2-(4-nitrophenyl)acrylamide: FTIR (KBr) cm^{-1} 3475, 3350 and $1601\left(\mathrm{NH}_{2}\right), 3437(\mathrm{~N}-\mathrm{H}), 3055$ and $849(\mathrm{C}-\mathrm{H}), 3030$ and $749(\mathrm{Ar}-\mathrm{H}), 1693(\mathrm{C}=\mathrm{O}), 1657(\mathrm{C}=\mathrm{C})$, 1518 and $1346\left(\mathrm{C}_{-} \mathrm{NO}_{2}\right), 1116(\mathrm{C}=\mathrm{S}), 700(\mathrm{C}-\mathrm{Cl}) ;{ }^{1} \mathrm{H}$ NMR (DMSO) $\delta 9.50(\mathrm{~s}, 2 \mathrm{H}), 8.35(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~d}, 2 \mathrm{H})$, $7.90(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.79(\mathrm{~m}, 6 \mathrm{H})$; MS (TISI) $395.6\left(\mathrm{M}^{+}\right)$.

6i:(2E)-3-(2,3-dichlorophenyl)-2-(4-nitrophenyl)- N-pyridin-4-ylacrylamide: FTIR (KBr) $\mathrm{cm}^{-1} 3444(\mathrm{~N}-\mathrm{H})$, 3039 and $857(\mathrm{C}-\mathrm{H}), 3025$ and $750(\mathrm{Ar}-\mathrm{H}), 1690(\mathrm{C}=\mathrm{O}), 1642(\mathrm{C}=\mathrm{N}-\mathrm{C}), 1599(\mathrm{C}=\mathrm{C}$ of Ar$), 1520$ and 1340 (C-
$\left.\mathrm{NO}_{2}\right), 700(\mathrm{C}-\mathrm{Cl}) ;{ }^{1} \mathrm{H}$ NMR (DMSO) $\delta 9.80(\mathrm{~s}, 1 \mathrm{H}), 8.48(\mathrm{~d}, 2 \mathrm{H}), 8.27(\mathrm{~d}, 2 \mathrm{H}), 7.80(\mathrm{~d}, 2 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.24-$ $7.59(\mathrm{~m}, 6 \mathrm{H}) ; \mathrm{MS}(\mathrm{TISI}) 413.5\left(\mathrm{M}^{+}\right)$.

6j:(2E)-3-(2,3-dichlorophenyl)- \boldsymbol{N}-1-naphthyl-2-(4-nitrophenyl)acrylamide: FTIR (KBr) $\mathrm{cm}^{-1} 3429$ (N-H), 3054 and $858(\mathrm{C}-\mathrm{H}), 3020$ and $761(\mathrm{Ar}-\mathrm{H}), 1686(\mathrm{C}=\mathrm{O}), 1650(\mathrm{C}=\mathrm{C}), 1601(\mathrm{C}=\mathrm{C}$ of Ar$), 1519$ and $1345(\mathrm{C}-$ $\left.\mathrm{NO}_{2}\right), 680(\mathrm{C}-\mathrm{Cl}) ;{ }^{1} \mathrm{H} \operatorname{NMR}(\mathrm{DMSO}) \delta 10.51(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{~d}, 2 \mathrm{H}), 6.88-7.83(\mathrm{~m}, 14 \mathrm{H}) ; \mathrm{MS}(\mathrm{TISI}) 462.7\left(\mathrm{M}^{+}\right)$.

6k: 1-[(2E)-3-(2,3-dichlorophenyl)-2-(4-nitrophenyl)prop-2-enoyl]piperidine: FTIR (KBr) $\mathrm{cm}^{-1} 3010$ and $858(\mathrm{C}-\mathrm{H}), 2949$ and $1456\left(\mathrm{CH}_{2}\right), 1676(\mathrm{C}=\mathrm{O}), 1635(\mathrm{C}=\mathrm{C}), 1601(\mathrm{C}=\mathrm{C}$ of Ar$), 1520$ and $1340\left(\mathrm{C}-\mathrm{NO}_{2}\right), 1200$ $\left(\mathrm{NR}_{3}\right), 749(\mathrm{Ar}-\mathrm{H}), 689(\mathrm{C}-\mathrm{Cl}) ;{ }^{1} \mathrm{H} \operatorname{NMR}(\mathrm{DMSO}) \delta 8.29(\mathrm{~d}, 2 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.81(\mathrm{~m}, 6 \mathrm{H}), 3.59(\mathrm{t}, 4 \mathrm{H})$, $1.56(\mathrm{~m}, 6 \mathrm{H}) ; \mathrm{MS}(\mathrm{TISI}) 404.6\left(\mathrm{M}^{+}\right)$.

61: 1-[(2E)-3-(2,3-dichlorophenyl)-2-(4-nitrophenyl)prop-2-enoyl]piperazine: FTIR (KBr) $\mathrm{cm}^{-1} 3439$ (N-H), 3039 and $855(\mathrm{C}-\mathrm{H}), 3019$ and $750(\mathrm{Ar}-\mathrm{H}), 2949$ and $1455\left(\mathrm{CH}_{2}\right), 1667(\mathrm{C}=\mathrm{O}), 1600(\mathrm{C}=\mathrm{C}$ of Ar$), 1519$ and 1339 $\left(\mathrm{C}-\mathrm{NO}_{2}\right), 1199\left(\mathrm{NR}_{3}\right), 689(\mathrm{C}-\mathrm{Cl}) ;{ }^{1} \mathrm{H} \operatorname{NMR}(\mathrm{DMSO}) \delta 8.27(\mathrm{~d}, 2 \mathrm{H}), 7.81(\mathrm{~d}, 2 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.59(\mathrm{~m}$, $4 \mathrm{H}), 3.01(\mathrm{t}, 4 \mathrm{H}), 2.79(\mathrm{t}, 4 \mathrm{H}), 1.82(\mathrm{~s}, 1 \mathrm{H}) ; \mathrm{MS}(\mathrm{TISI}) 405.6\left(\mathrm{M}^{+}\right)$.

6m:(2E)-3-(2,3-dichlorophenyl)-2-(4-nitrophenyl)-N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)acrylamide: FTIR (KBr) $\mathrm{cm}^{-1} 3419(\mathrm{~N}-\mathrm{H}), 3040$ and $857(\mathrm{C}-\mathrm{H}), 3020$, 749 and 705 (Ar-H), 2916 and $1471\left(\mathrm{CH}_{3}\right), 1759,1711$ and $1677(\mathrm{C}=\mathrm{O}), 1599(\mathrm{C}=\mathrm{C}$ of Ar$), 1520$ and $1340\left(\mathrm{C}-\mathrm{NO}_{2}\right), 1190\left(\mathrm{NR}_{3}\right), 679(\mathrm{C}-$ $\mathrm{Cl}) ;{ }^{1} \mathrm{H} \operatorname{NMR}(\mathrm{DMSO}) \delta 9.64(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~d}, 2 \mathrm{H}), 7.81(\mathrm{~d}, 2 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.27-7.63(\mathrm{~m}, 8 \mathrm{H}), 6.92(\mathrm{~m}, 1 \mathrm{H})$, $2.89(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{MS}$ (TISI) $522.6\left(\mathrm{M}^{+}\right)$.

6n:(2E)-3-(2,3-dichlorophenyl)- \boldsymbol{N}-(2-methoxyphenyl)-2-(4-nitrophenyl)acrylamide: FTIR (KBr) $\mathrm{cm}^{-1} 3435$ $(\mathrm{N}-\mathrm{H}), 3039$ and $860(\mathrm{C}-\mathrm{H}), 3025$ and $749(\mathrm{Ar}-\mathrm{H}), 2936$ and $1466\left(\mathrm{CH}_{3}\right), 1696(\mathrm{C}=\mathrm{O}), 1599(\mathrm{C}=\mathrm{C}$ of Ar$), 1520$ and $1339\left(\mathrm{C}_{-} \mathrm{NO}_{2}\right), 1240$ and $1010(\mathrm{C}-\mathrm{O}), 680(\mathrm{C}-\mathrm{Cl}) ;{ }^{1} \mathrm{H}$ NMR (DMSO) $\delta 9.77(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~d}, 2 \mathrm{H}), 7.34-7.90$ $(\mathrm{m}, 8 \mathrm{H}), 7.00-7.10(\mathrm{~m}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{MS}(\mathrm{TISI}) 442.7\left(\mathrm{M}^{+}\right)$.

Antiangiogenic activity

Table 2 shows the effects of the test substances on angiogenesis. Because most compounds demonstrated a hazardous impact at greater doses, all of the compounds were evaluated at a level of $0.01 \mathrm{mg} / \mathrm{pellet}$, i.e. less than
$40 \mathrm{nmol} /$ pellet. Compounds $3 \mathrm{a}, 3 \mathrm{~d}, 5 \mathrm{a}, 5 \mathrm{~b}, 5 \mathrm{c}$, and 5 d demonstrated an antiangiogenic score of higher than 1 in (Z)-1-phenyl-2-(4-nitrophenyl) ethene analogues. Compound 5a was determined to be the most powerful, scoring 1.8 ± 0.1, which is higher than the standard. Compound 3 a and 5 d also performed well, with a score that was comparable to the standard.

The findings reveal that the produced chemicals have potent antiangiogenic properties. The most active analogues $3 \mathrm{a}, 3 \mathrm{~d}, 5 \mathrm{a}, 5 \mathrm{~b}, 5 \mathrm{c}$ and 5 d contain smaller groups as bridge substituents, such as $\mathrm{COOH}, \mathrm{COOCH} 3$, or COCl , whereas the least active analogues $6 \mathrm{e}, 6 \mathrm{f}, 6 \mathrm{~g}, 6 \mathrm{i}, 6 \mathrm{j}$ and 6 m have comparably big groups. Aromatic substituted compounds (6b, 6d, 6i, 6j and 6m) were the least active. So, compounds with the Piperidin-1-ylcarbonyl, carboxyl, methoxycarbonyl, and chlorocarbonyl moiety on the (Z)-1-phenyl-2-(4-nitrophenyl) ethene skeleton are among the most active in our investigation. The antiangiogenic action of the series investigated is influenced by the size of bridge substituents.

Table 2Antiangiogenic activity of synthesized compounds in the CAM assay

Test compound	Concentration	Antiangiogenicscore ${ }^{\mathrm{b}} \pm \mathbf{\text { sd }}$ $(\mathbf{n}=\mathbf{n o . ~ o f ~ e x p e r i m e n t) ~}$
	0.01	
3 m	0.01	$1.1 \pm 0.1(\mathrm{n}=2)$
3 b	0.01	$0.7 \pm 0.1(\mathrm{n}=2)$
3 c	0.01	$1.3 \pm 0.1(\mathrm{n}=2)$
3 d	0.01	$1.2 \pm 0.1(\mathrm{n}=2)$
4 a	0.01	$0.9 \pm 0.1(\mathrm{n}=2)$
4 b	0.01	$0.6 \pm 0.2(\mathrm{n}=2)$
4 c	0.01	$0.8 \pm 0.1(\mathrm{n}=2)$
4 d	0.01	$1.8 \pm 0.1(\mathrm{n}=3)$
5 a	0.01	$1.0 \pm 0.1(\mathrm{n}=2)$
5 b	0.01	$1.2 \pm 0.1(\mathrm{n}=2)$
5 c	0.01	$1.5 \pm 0.1(\mathrm{n}=3)$
5 d	0.01	$0.8 \pm 0.1(\mathrm{n}=2)$
6 a	0.01	$0.6 \pm 0.2(\mathrm{n}=2)$
6 b		

6 c	0.01	$0.8 \pm 0.1(\mathrm{n}=2)$
6 d	0.01	$0.2 \pm 0.3(\mathrm{n}=2)$
6 e	0.01	$0.6 \pm 0.1(\mathrm{n}=2)$
6 f	0.01	$0.7 \pm 0.1(\mathrm{n}=2)$
6 g	0.01	$0.2 \pm 0.4(\mathrm{n}=2)$
6 h	0.01	$0.9 \pm 0.1(\mathrm{n}=2)$
6 i	0.01	$0.4 \pm 0.2(\mathrm{n}=2)$
6 j	0.01	$0.3 \pm 0.3(\mathrm{n}=2)$
6 k	0.01	$0.8 \pm 0.1(\mathrm{n}=2)$
6 l	0.01	$0.6 \pm 0.1(\mathrm{n}=2)$
6 m	0.01	$0.4 \pm 0.1(\mathrm{n}=2)$
6 n	0.01	$0.5 \pm 0.1(\mathrm{n}=2)$
Agarose pellet		$0.1 \pm 0.1(\mathrm{n}=10)$
$\beta-1,4$-galactan		$1.4 \pm 0.1(\mathrm{n}=10)$
sulphate (LuPS S5)		

${ }^{\mathrm{b}} 0=$ no or weak effect, $1=$ medium effect, $2=$ strong effect

Anticancer activity

Table 3 shows anticancer activity of screened compounds (3a, 3d, 5a, 5b, 5c, 5d) against of HCT-116 (colon cancer) and MCF-7 (breast cancer) cell lines by modified MTT assay method. Compound 5a showed maximum activity with \% growth inhibition of 63.43 and 56.24 against HCT-116 and MCF-7 cell lines respectively. Compound 3a and 3d also showed more than 50\% growth inhibition against HCT-116 cell lines. Results revealed that synthesized analogues are more active against HCT-116 (colon cancer) cell lines in comparison to MCF-7 (Breast cancer) cell lines. (Z)-1-phenyl-2-(4-nitrophenyl) ethene analogues showed significant growth inhibition of HCT-116 (colon cancer) and MCF-7 (breast cancer) cell lines.

Table 3 Anticancer activity of compounds against of HCT-116 (colon cancer) and MCF-7 (breast cancer) cell lines by modified MTT assay method

Test compound	Concentration (dose)	\% Growth Inhibition	
		HCT-116	MCF-7

3 a	$10 \mu \mathrm{M}$	51.46	42.29
3 d	$10 \mu \mathrm{M}$	54.22	46.57
5 a	$10 \mu \mathrm{M}$	68.43	56.24
5 b	$10 \mu \mathrm{M}$	48.75	39.43
5 c	$10 \mu \mathrm{M}$	41.66	25.43
5 d	$10 \mu \mathrm{M}$	38.63	29.67

Conclusion

Antiangiogenic activity testing revealed that the majority of the synthesised compounds exhibited considerable antiangiogenic activity. Antiangiogenic action was discovered to be affected by the size of the bridge substituent (on the Ethylene Bridge). Compounds with fewer substituents were more active. The most appropriate groups were determined to be piperidin-1-ylcarbonylcarbonyl, carboxyl, methoxycarbonyl, and chlorocarbonyl. Compound 5a showed maximum anticancer activity with $\%$ growth inhibition of 63.43 and 56.24 against HCT116 and MCF-7 cell lines respectively. Compound 3a and 3d also showed more than 50% growth inhibition against HCT-116 cell lines. Results revealed that synthesized analogues are more active against HCT-116 (colon cancer) cell lines in comparison to MCF-7 (Breast cancer) cell lines. (Z)-1-phenyl-2-(4-nitrophenyl) ethene analogues showed significant growth inhibition in anticancer screen. Finally, it's possible that further derivatization of these molecules will be pursued in the hopes of obtaining more selective and potent anticancer medicines.

References

1. A. D. Kinghorn, E. J. C. De Blanco, D. M. Lucas, H. L. Rakotondraibe, J. Orjala, D. D. Soejarto, N. H. Oberlies, C. J. Pearce, M. C. Wani, B. R. Stockwell, J.E. Burdette, S. M. Swanson, J. R. Fuchs, M.
A. Phelps, L. Xu, X. Zhang and Y.Y. Shen, Anticancer Research 2016, 36, 5623-5638.
2. M. Turek, M. Krzyczmonik, P. Bałczewski, Medicinal Chemistry 2016, 12, 700-719.
3. (a) K.Z. Xiao, L.J. Xuan, J. Zhang, J.M. Xu, D.L. Bai, Studies in Natural Products Chemistry, Atta-ur-Rahman; Elsevier Science, B.V., Ed.; 2008, 34, 453-645. (b) Y. Zhou, J. Zheng, Y. Li, D.-P. Xu, S. Li, Y.-M. Chen and H.-B. Li, Nutrients 2016, 8, 515-550.
4. C. Rivière, A.D. Pawlus, J.M. Mérillon, Natural Product Reports, 2012, 29, 11, 1317-1333.
5. T. Shen, X.N. Wang, H.X. Lou, Natural Product Reports, 2009, 26, 7, 916-935.
6. I. N. Ioffe, A. A. Granovsky, J. Chem. Theory Comput. 2013, 9, 4973-4990.
7. H. Rajak, P. Kumar Dewangan, V. Patel, D. Kumar Jain, A. Singh, R. Veerasamy, P. Chander Sharma, A. Dixit, Current Pharmaceutical Deign, 2013, 19, 7, 1923-1955.
8. M. Cushman, D. Nagarathnam, D. Gopal, H. M. He, C. M. Lin, E. Hamel, Journal of Medicinal Chemistry 1992, 35, 2293-2306.
9. J. Jiang, C. Zheng, K. Zhu, J. Liu, N. Sun, C. Wang, H. Jiang, J. Zhu, C. Luo, and Y. Zhou, Journal of Medicinal Chemistry 2015, 58, 2538-2546.
10. a) M. Reinisalo, A. Karlund, A.Koskela, K. Kaarniranta, R. O. Karjalainen, Oxidative Medicine and Cellular Longevity 2015, 2015, 340-520; b) T. Hong, W. Jiang, H.-M. Dong, S.- X. QIU, Y. Lu, Chinese Journal of Natural Medicines 2015, 13(5) 0375-0382; c) S. Pervaiz, A.L. Holme, Antioxid Redox Signal 2009, 11, 2851-2897.
11. a) A. Csiszar, Ann. N. Y. Acad. Sci. 2011, 1215, 117-122. b) L. G. Carter, J. A. D’Orazio, K. J. Pearson, Endocrine-Related Cancer 2014, 21, 209-225.
12. S. Fulda, Drug Discovery Today 2010, 15, 757-765.
13. C. K. Singh, M. A. Ndiaye, N. Ahmad, BiochimicaetBiophysicaActa, 2015, 1852, 1178-1185.
14. S. Molino, M. Dossena, D. Buonocore, F. Ferrari, L. Venturini, G. Ricevuti, M. Verri, Life Sciences 2016, 161, 69-77.
15. a) B. De Filippis, A. Giancristofaro, A. Ammazzalorso, A. D’Angelo, M. Fantacuzzi, L. Giampietro, C. Maccallini, M. Petruzzelli, R. Amoroso, European Journal of Medicinal Chemistry 2011, 46, 4218-5224; b) B. De Filippis, M. Agamennone, A. Ammazzalorso, I. Bruno, A. D’Angelo, M. Di Matteo, M. Fantacuzzi, L. Giampietro, A. Giancristofaro, C. Maccallini, R. Amoroso, Med. Chem. Commun. 2015, 6, 1513-1517; c) B. De Filippis, P. Linciano, A. Ammazzalorso, C. Di Giovanni, M. Fantacuzzi, L. Giampietro, A. Laghezza, C. Maccallini, P. Tortorella, A. Lavecchia, F. Loiodice, R. Amoroso, European Journal of Medicinal Chemistry, 2015, 89, 817-825; d) L. Giampietro, A. D’Angelo, A. Giancristofaro, A. Ammazzalorso, B. De Filippis, M. Fantacuzzi, P. Linciano, C. Maccallini, R.Amoroso, Bioorganic \& Medicinal Chemistry Letters 2012, 22, 7662-7666; e) L. Giampietro, A. D'Angelo, A. Giancristofaro, A. Ammazzalorso, B. De Filippis, M. Di Matteo, M. Fantacuzzi, P. Linciano, C. Maccallini, R. Amoroso, Medicinal Chemistry 2014, 10, 1, 59-65.
16. C. Li, J.-S. Fang, W.-W. Lian, X.-C. Pan , A.-L. Liu, and G,-H, Du, ChemBiol Drug Des 2015, 85, 427-438.
17. F.S. Aldawsari, R. P. Aguiar, L. A. M. Wiirzler, R. Aguayo-Ortiz, N. Aljuhani, R. K. N. Cuman, J. L. Medina-Franco, A. G. Siraki, C. A. Velázquez-Martínez, Bioorganic \& Medicinal Chemistry Letters 2016, 26, 1411-1415.
18. a) E. Giacomini, S. Rupiani, L. Guidotti, M. Recanatini, M. Roberti, Current Medicinal Chemistry, 2016, 23(23), 2439-2489; b) P. Marchetti, B. Pavan, D. Simoni, R. Baruchello, R. Rondanina, C. Mischiati, G. Feriottod, L. Ferraro, L.-C. Hsu, R. M. Lee, A. Dalpiaz, European Journal of Pharmaceutical Sciences 2016, 91, 50-63.
19. A. Chaudhary, S.N. Pandeya, P. Kumar, P.P. Sharma, S. Gupta, N. Soni, K.K. Verma, G. Bhardwaj, Mini Reviews in Medicinal Chemistry, 2007, 7(12), 1186-1205.
20. R. Hoffman, D. Paper, J. Donaldson, H. Vogl, Brazilian Journal of Cancer, 1996,73, 1183-1186.
21. M. R. Boyd, K. D. Paull, Drug Development Research, 1995, 34, 91-109.
